Anti-GPC3-CAR T Cells Suppress the Growth of Tumor Cells in Patient-Derived Xenografts of Hepatocellular Carcinoma
نویسندگان
چکیده
BACKGROUND The lack of a general clinic-relevant model for human cancer is a major impediment to the acceleration of novel therapeutic approaches for clinical use. We propose to establish and characterize primary human hepatocellular carcinoma (HCC) xenografts that can be used to evaluate the cytotoxicity of adoptive chimeric antigen receptor (CAR) T cells and accelerate the clinical translation of CAR T cells used in HCC. METHODS Primary HCCs were used to establish the xenografts. The morphology, immunological markers, and gene expression characteristics of xenografts were detected and compared to those of the corresponding primary tumors. CAR T cells were adoptively transplanted into patient-derived xenograft (PDX) models of HCC. The cytotoxicity of CAR T cells in vivo was evaluated. RESULTS PDX1, PDX2, and PDX3 were established using primary tumors from three individual HCC patients. All three PDXs maintained original tumor characteristics in their morphology, immunological markers, and gene expression. Tumors in PDX1 grew relatively slower than that in PDX2 and PDX3. Glypican 3 (GPC3)-CAR T cells efficiently suppressed tumor growth in PDX3 and impressively eradicated tumor cells from PDX1 and PDX2, in which GPC3 proteins were highly expressed. CONCLUSION GPC3-CAR T cells were capable of effectively eliminating tumors in PDX model of HCC. Therefore, GPC3-CAR T cell therapy is a promising candidate for HCC treatment.
منابع مشابه
Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma.
PURPOSE The aim of our study is to elucidate whether T cells expressing GPC3-targeted chimeric antigen receptor (CAR) can efficiently eliminate GPC3-positive HCC cells and their potential in the treatment of HCC. EXPERIMENTAL DESIGN T cells expressing a first-generation and third-generation GPC3-targeted CAR were prepared using lentiviral vector transduction. The in vitro and in vivo cytotoxi...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملMouse homologue of a novel human oncofetal antigen, glypican-3, evokes T-cell-mediated tumor rejection without autoimmune reactions in mice.
PURPOSE AND EXPERIMENTAL DESIGN We recently identified glypican-3 (GPC3) overexpressed specifically in human hepatocellular carcinoma, as based on cDNA microarray analysis of 23,040 genes, and we reported that GPC3 is a novel tumor marker for human hepatocellular carcinoma and melanoma. GPC3, expressed in almost all hepatocellular carcinomas and melanomas, but not in normal tissues except for p...
متن کاملHighly Efficient Transfection of Dendritic Cells Derived from Esophageal Squamous Cell Carcinoma Patient: Optimization with Green Fluorescent Protein and Validation with Tumor RNA as a Tool for Immuno-genetherapy
This study was conducted to optimize a highly efficient mRNA transfection into dendritic cells (DC) derived from esophageal squamous cell carcinoma (ESCC) patients. Applying an electroporation technique, in vitro synthesized Green Fluorescent Protein (GFP) mRNA was transfected as an indicator into the DCs derived from a healthy donor. Flow cytometry revealed 84.9% transfection efficiency for DC...
متن کاملTreatment of hepatocellular carcinoma with a GPC3-targeted bispecific T cell engager
There are limited strategies for the treatment of hepatocellular carcinoma (HCC). In this study, we prepared a Bispecific T cell engager (BiTE) targeting Glypican 3 (GPC3) and CD3. The GPC3/CD3 BiTE was prepared by fusing the single-chain variable fragment (scFv) of the humanized anti-GPC3 antibody (9F2) with the scFv of the anti-CD3 antibody (OKT3). The in vitro and in vivo cytotoxic activitie...
متن کامل